Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic
نویسندگان
چکیده
منابع مشابه
Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to da...
متن کاملLand Cover Classification Using Hidden Markov Models
This paper, proposed a classification approach that utilizes the high recognition ability of Hidden Markov Models (HMM s) to perform high accuracy of classification by exploiting the spatial inter pixels dependencies ( i.e. the context ) as well as the spectral information. Applying unsupervised classification to remote sensing images can provide benefits in converting the raw image data into u...
متن کاملRandom Forest Algorithm for Land Cover Classification
Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...
متن کاملSequential Land Cover Classification
Land cover classification using remotely sensed data is a critical first step in large-scale environmental monitoring, resource management and regional planning. The classification task is made difficult by severe atmospheric scattering and absorption, seasonal variation, spatial dependence, complex surface dynamics and geometries, and large intra-class variability. Most of the recent research ...
متن کاملSpatial Classification for Land Cover Mapping
Zhe Jiang, [email protected] Abstract: My research explores novel computational techniques to map the physical cover (e.g., forests) of the earth’s surface from satellite images. Processing these images is labor-intensive and a significant burden on scientists. Existing methods ignore spatial information and assume that pixels are statistically independent. Consequently, they produce erroneous map...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing Letters
سال: 2010
ISSN: 2150-704X,2150-7058
DOI: 10.1080/01431160903252327